Development and validation of explainable machine learning models for risk of mortality in transcatheter aortic valve implantation: TAVI risk machine scores

Author:

Leha Andreas12ORCID,Huber Cynthia1ORCID,Friede Tim12ORCID,Bauer Timm3,Beckmann Andreas45,Bekeredjian Raffi6ORCID,Bleiziffer Sabine7ORCID,Herrmann Eva89ORCID,Möllmann Helge10,Walther Thomas11ORCID,Beyersdorf Friedhelm1213ORCID,Hamm Christian1415,Künzi Arnaud16ORCID,Windecker Stephan17ORCID,Stortecky Stefan17ORCID,Kutschka Ingo18ORCID,Hasenfuß Gerd219ORCID,Ensminger Stephan2021ORCID,Frerker Christian2221,Seidler Tim219ORCID

Affiliation:

1. Department of Medical Statistics, University Medical Center Göttingen , Humboldtallee 32, 37073 Göttingen , Germany

2. DZHK (German Center for Cardiovascular Research), Partner Site Göttingen , Robert-Koch str. 40, 37075 Göttingen , Germany

3. Department of Cardiology, Sana Klinikum Offenbach , Starkenburgring 66, 63069 Offenbach am Main , Germany

4. German Society for Thoracic and Cardiovascular Surgery , Langenbeck-Virchow-Haus, Luisenstraße 58/59, 10117 Berlin , Germany

5. Department for cardiac and pediatric cardiac surgery, Heart Center Duisburg, EVKLN , Gerrickstr. 21, 47137 Duisburg , Germany

6. Department of Cardiology, Robert-Bosch-Krankenhaus , Auerbachstraße 110, 70376 Stuttgart , Germany

7. Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center Northrhine-Westphalia , Georgstr 11, 32545 Bad Oeynhausen , Germany

8. Goethe University Frankfurt, Department of Medicine, Institute of Biostatistics and Mathematical Modelling , Theodor-Stern-Kai 7, 60590 Frankfurt Main , Germany

9. DZHK (German Centre for Cardiovascular Research), Partner Site Rhine/Main , Theodor-Stern-Kai 7, 60590 Frankfurt Main , Germany

10. Department of Cardiology, St.-Johannes-Hospital Dortmund , Johannesstrasse 9-17, 44137 Dortmund , Germany

11. Department of Cardiothoracic Surgery, University Hospital Frankfurt , Theodor-Stern-Kai 7, 60590 Frankfurt , Germany

12. Medical Faculty of the Albert-Ludwigs-University Freiburg, University Hospital Freiburg , Hugstetterstr. 55, 79106 Freiburg , Germany

13. Department of Cardiovascular Surgery, Heart Centre Freiburg University , Freiburg , Germany

14. Department of Cardiology and Angiology, University Hospital Gießen , Klinikstr. 33, 35392 Gießen , Germany

15. Department of Cardiology, Kerckhoff Heart and Thorax Center , Benekestraße 2-8, D-61231 Bad Nauheim , Germany

16. CTU Bern, University of Bern , Mittelstrasse 43, 3012 Bern , Switzerland

17. Department of Cardiology, Inselspital, Bern University Hospital, University of Bern , 3010 Bern , Switzerland

18. Clinic for Cardiothoracic and Vascular Surgery/Heart Center, University Medical Center Göttingen , Robert-Koch Str. 40, 37075 Göttingen , Germany

19. Clinic for Cardiology and Pulmonology, Heart Center, University Medical Center Göttingen , Robert-Koch Str. 40, 37075 Göttingen , Germany

20. Department of Cardiac and Thoracic Vascular Surgery, University Heart Center Lübeck , Ratzeburger Allee 160, 23538 Lübeck , Germany

21. DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck , Lübeck , Germany

22. Department of Cardiology, University Heart Center Lübeck , Ratzeburger Allee 160, 23538 Lübeck , Germany

Abstract

Abstract Aims Identification of high-risk patients and individualized decision support based on objective criteria for rapid discharge after transcatheter aortic valve implantation (TAVI) are key requirements in the context of contemporary TAVI treatment. This study aimed to predict 30-day mortality following TAVI based on machine learning (ML) using data from the German Aortic Valve Registry. Methods and results Mortality risk was determined using a random forest ML model that was condensed in the newly developed TAVI Risk Machine (TRIM) scores, designed to represent clinically meaningful risk modelling before (TRIMpre) and in particular after (TRIMpost) TAVI. Algorithm was trained and cross-validated on data of 22 283 patients (729 died within 30 days post-TAVI) and generalisation was examined on data of 5864 patients (146 died). TRIMpost demonstrated significantly better performance than traditional scores [C-statistics value, 0.79; 95% confidence interval (CI)] [0.74; 0.83] compared to Society of Thoracic Surgeons (STS) with C-statistics value 0.69; 95%-CI [0.65; 0.74]). An abridged (aTRIMpost) score comprising 25 features (calculated using a web interface) exhibited significantly higher performance than traditional scores (C-statistics value, 0.74; 95%-CI [0.70; 0.78]). Validation on external data of 6693 patients (205 died within 30 days post-TAVI) of the Swiss TAVI Registry confirmed significantly better performance for the TRIMpost (C-statistics value 0.75, 95%-CI [0.72; 0.79]) compared to STS (C-statistics value 0.67, CI [0.63; 0.70]). Conclusion TRIM scores demonstrate good performance for risk estimation before and after TAVI. Together with clinical judgement, they may support standardised and objective decision-making before and after TAVI.

Funder

German Center for Cardiovasclar Research

Edwards Lifesciences

JenaValve Technology

Medtronic

Sorin

St Jude Medical

Symetis SA

Publisher

Oxford University Press (OUP)

Subject

Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3