Leveraging the potential of machine learning for assessing vascular ageing: state-of-the-art and future research

Author:

Bikia Vasiliki1ORCID,Fong Terence23ORCID,Climie Rachel E24ORCID,Bruno Rosa-Maria4ORCID,Hametner Bernhard5ORCID,Mayer Christopher5ORCID,Terentes-Printzios Dimitrios6ORCID,Charlton Peter H78ORCID

Affiliation:

1. Laboratory of Hemodynamics and Cardiovascular Technology (LHTC), Swiss Federal Institute of Technology, CH-1015 Lausanne, Vaud, Switzerland

2. Baker Heart and Diabetes Institute, 75 Commercial Rd, Melbourne, Victoria, 3004 Australia

3. Department of Cardiometabolic Health, Melbourne Medical School, University of Melbourne, Grattan Street, Parkville, Victoria, 3010 Australia

4. Université de Paris, INSERM U970, Paris Cardiovascular Research Centre, Integrative Epidemiology of Cardiovascular Disease, Paris, France

5. Center for Health & Bioresources, AIT Austrian Institute of Technology, Giefinggasse 4, 1210 Vienna, Austria

6. First Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, 114 Vasilissis Sofias Avenue, 11527, Athens, Greece

7. Department of Public Health and Primary Care, Strangeways Research Laboratory, 2 Worts' Causeway, Cambridge, CB1 8RN, UK

8. Research Centre for Biomedical Engineering, City, University of London, Northampton Square, London, EC1V 0HB, UK

Abstract

Abstract Vascular ageing biomarkers have been found to be predictive of cardiovascular risk independently of classical risk factors, yet are not widely used in clinical practice. In this review, we present two basic approaches for using machine learning (ML) to assess vascular age: parameter estimation and risk classification. We then summarize their role in developing new techniques to assess vascular ageing quickly and accurately. We discuss the methods used to validate ML-based markers, the evidence for their clinical utility, and key directions for future research. The review is complemented by case studies of the use of ML in vascular age assessment which can be replicated using freely available data and code.

Funder

COST Action CA18216 ‘Network for Research in Vascular Ageing’

COST

British Heart Foundation

Wellcome EPSRC Centre for Medical Engineering at King's College London

National Heart Foundation fellowship

Swiss National Science Foundation (SNF

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3