AI-AIF: artificial intelligence-based arterial input function for quantitative stress perfusion cardiac magnetic resonance

Author:

Scannell Cian M12ORCID,Alskaf Ebraham1,Sharrack Noor3ORCID,Razavi Reza1ORCID,Ourselin Sebastien1,Young Alistair A1,Plein Sven13ORCID,Chiribiri Amedeo1

Affiliation:

1. School of Biomedical Engineering & Imaging Sciences, King’s College London , 4th Floor Lambeth Wing, St Thomas′ Hospital, London SE1 7EH , UK

2. Department of Biomedical Engineering, Eindhoven University of Technology , Gemini-Zuid, Groene Loper 5, 5612 Eindhoven , The Netherlands

3. Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds , Clarendon Way, Leeds LS2 9JT , UK

Abstract

Abstract Aims One of the major challenges in the quantification of myocardial blood flow (MBF) from stress perfusion cardiac magnetic resonance (CMR) is the estimation of the arterial input function (AIF). This is due to the non-linear relationship between the concentration of gadolinium and the MR signal, which leads to signal saturation. In this work, we show that a deep learning model can be trained to predict the unsaturated AIF from standard images, using the reference dual-sequence acquisition AIFs (DS-AIFs) for training. Methods and results A 1D U-Net was trained, to take the saturated AIF from the standard images as input and predict the unsaturated AIF, using the data from 201 patients from centre 1 and a test set comprised of both an independent cohort of consecutive patients from centre 1 and an external cohort of patients from centre 2 (n = 44). Fully-automated MBF was compared between the DS-AIF and AI-AIF methods using the Mann–Whitney U test and Bland–Altman analysis. There was no statistical difference between the MBF quantified with the DS-AIF [2.77 mL/min/g (1.08)] and predicted with the AI-AIF (2.79 mL/min/g (1.08), P = 0.33. Bland–Altman analysis shows minimal bias between the DS-AIF and AI-AIF methods for quantitative MBF (bias of −0.11 mL/min/g). Additionally, the MBF diagnosis classification of the AI-AIF matched the DS-AIF in 669/704 (95%) of myocardial segments. Conclusion Quantification of stress perfusion CMR is feasible with a single-sequence acquisition and a single contrast injection using an AI-based correction of the AIF.

Funder

Wellcome/EPSRC Centre for Medical Engineering

Wellcome Trust

British Heart Foundation

Publisher

Oxford University Press (OUP)

Subject

Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3