Artificial intelligence-based classification of echocardiographic views

Author:

Naser Jwan A1ORCID,Lee Eunjung1,Pislaru Sorin V1ORCID,Tsaban Gal1,Malins Jeffrey G1,Jackson John I1,Anisuzzaman D M1,Rostami Behrouz1,Lopez-Jimenez Francisco1ORCID,Friedman Paul A1,Kane Garvan C1,Pellikka Patricia A1ORCID,Attia Zachi I1ORCID

Affiliation:

1. Department of Cardiovascular Medicine, Mayo Clinic , 200 First Street SW, Rochester, MN 55905 , USA

Abstract

Abstract Aims Augmenting echocardiography with artificial intelligence would allow for automated assessment of routine parameters and identification of disease patterns not easily recognized otherwise. View classification is an essential first step before deep learning can be applied to the echocardiogram. Methods and results We trained two- and three-dimensional convolutional neural networks (CNNs) using transthoracic echocardiographic (TTE) studies obtained from 909 patients to classify nine view categories (10 269 videos). Transthoracic echocardiographic studies from 229 patients were used in internal validation (2582 videos). Convolutional neural networks were tested on 100 patients with comprehensive TTE studies (where the two examples chosen by CNNs as most likely to represent a view were evaluated) and 408 patients with five view categories obtained via point-of-care ultrasound (POCUS). The overall accuracy of the two-dimensional CNN was 96.8%, and the averaged area under the curve (AUC) was 0.997 on the comprehensive TTE testing set; these numbers were 98.4% and 0.998, respectively, on the POCUS set. For the three-dimensional CNN, the accuracy and AUC were 96.3% and 0.998 for full TTE studies and 95.0% and 0.996 on POCUS videos, respectively. The positive predictive value, which defined correctly identified predicted views, was higher with two-dimensional rather than three-dimensional networks, exceeding 93% in apical, short-axis aortic valve, and parasternal long-axis left ventricle views. Conclusion An automated view classifier utilizing CNNs was able to classify cardiac views obtained using TTE and POCUS with high accuracy. The view classifier will facilitate the application of deep learning to echocardiography.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3