Dampened sensory representations for expected input across the ventral visual stream

Author:

Richter David1,Heilbron Micha12,de Lange Floris P1

Affiliation:

1. Radboud University Nijmegen Donders Institute for Brain, Cognition and Behaviour, , 6500 HB Nijmegen, The Netherlands

2. Max Planck Institute for Psycholinguistics , 6525 XD Nijmegen, The Netherlands

Abstract

Abstract Expectations, derived from previous experience, can help in making perception faster, more reliable and informative. A key neural signature of perceptual expectations is expectation suppression, an attenuated neural response to expected compared with unexpected stimuli. While expectation suppression has been reported using a variety of paradigms and recording methods, it remains unclear what neural modulation underlies this response attenuation. Sharpening models propose that neural populations tuned away from an expected stimulus are particularly suppressed by expectations, thereby resulting in an attenuated, but sharper population response. In contrast, dampening models suggest that neural populations tuned toward the expected stimulus are most suppressed, thus resulting in a dampened, less redundant population response. Empirical support is divided, with some studies favoring sharpening, while others support dampening. A key limitation of previous neuroimaging studies is the ability to draw inferences about neural-level modulations based on population (e.g. voxel) level signals. Indeed, recent simulations of repetition suppression showed that opposite neural modulations can lead to comparable population-level modulations. Forward models provide one solution to this inference limitation. Here, we used forward models to implement sharpening and dampening models, mapping neural modulations to voxel-level data. We show that a feature-specific gain modulation, suppressing neurons tuned toward the expected stimulus, best explains the empirical fMRI data. Thus, our results support the dampening account of expectation suppression, suggesting that expectations reduce redundancy in sensory cortex, and thereby promote updating of internal models on the basis of surprising information.

Funder

EC Horizon 2020 Program ERC Starting Grant

The Netherlands Organization for Scientific Research, Vidi Grant

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3