The Evolution of Transglutaminases Underlies the Origin and Loss of Cornified Skin Appendages in Vertebrates

Author:

Sachslehner Attila Placido1,Surbek Marta1,Holthaus Karin Brigit1,Steinbinder Julia1,Golabi Bahar1,Hess Claudia2,Eckhart Leopold1ORCID

Affiliation:

1. Department of Dermatology, Medical University of Vienna , 1090 Vienna , Austria

2. Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna , 1210 Vienna , Austria

Abstract

Abstract Transglutaminases (TGMs) cross-link proteins by introducing covalent bonds between glutamine and lysine residues. These cross-links are essential for epithelial cornification which enables tetrapods to live on land. Here, we investigated which evolutionary adaptations of vertebrates were associated with specific changes in the family of TGM genes. We determined the catalog of TGMs in the main clades of vertebrates, performed a comprehensive phylogenetic analysis of TGMs, and localized the distribution of selected TGMs in tissues. Our data suggest that TGM1 is the phylogenetically oldest epithelial TGM, with orthologs being expressed in the cornified teeth of the lamprey, a basal vertebrate. Gene duplications led to the origin of TGM10 in stem vertebrates, the origin of TGM2 in jawed vertebrates, and an increasing number of epithelium-associated TGM genes in the lineage leading to terrestrial vertebrates. TGM9 is expressed in the epithelial egg tooth, and its evolutionary origin in stem amniotes coincided with the evolution of embryonic development in eggs that are surrounded by a protective shell. Conversely, viviparous mammals have lost both the epithelial egg tooth and TGM9. TGM3 and TGM6 evolved as regulators of cornification in hair follicles and underwent pseudogenization upon the evolutionary loss of hair in cetaceans. Taken together, this study reveals the gain and loss of vertebrate TGM genes in association with the evolution of cornified skin appendages and suggests an important role of TGM9 in the evolution of amniotes.

Funder

Austrian Science Fund

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3