Gene Transfer Among Viruses Substantially Contributes to Gene Gain of Giant Viruses

Author:

Wu Junyi1ORCID,Meng Lingjie1ORCID,Gaïa Morgan23ORCID,Hikida Hiroyuki1ORCID,Okazaki Yusuke1ORCID,Endo Hisashi1ORCID,Ogata Hiroyuki1ORCID

Affiliation:

1. Bioinformatics Center, Institute for Chemical Research, Kyoto University , Gokasho, Uji 611-0011 , Japan

2. Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay , Evry F-91057 , France

3. Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE , Paris F-75016 , France

Abstract

Abstract The phylum Nucleocytoviricota comprises a diverse group of double-stranded DNA viruses that display a wide range of gene repertoires. Although these gene repertoires determine the characteristics of individual viruses, the evolutionary processes that have shaped the gene repertoires of extant viruses since their common ancestor are poorly characterized. In this study, we aimed to address this gap in knowledge by using amalgamated likelihood estimation, a probabilistic tree reconciliation method that infers evolutionary scenarios by distinguishing origination, gene duplications, virus-to-virus horizontal gene transfer (vHGT), and gene losses. We analyzed over 4,700 gene families from 195 genomes spanning all known viral orders. The evolutionary reconstruction suggests a history of extensive gene gains and losses during the evolution of these viruses, notably with vHGT contributing to gene gains at a comparable level to duplications and originations. The vHGT frequently occurred between phylogenetically closely related viruses, as well as between distantly related viruses with an overlapping host range. We observed a pattern of massive gene duplications that followed vHGTs for gene families that was potentially related to host range control and virus–host arms race. These results suggest that vHGT represents a previously overlooked, yet important, evolutionary force that integrates the evolutionary paths of multiple viruses and affects shaping of Nucleocytoviricota virus gene repertoires.

Funder

JSPS/KAKENHI

JST SPRING

Institute for Chemical Research, Kyoto University

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3