Ancient Coretention of Paralogs of Cid Centromeric Histones and Cal1 Chaperones in Mosquito Species

Author:

Kursel Lisa E123,Welsh Frances C234,Malik Harmit S35ORCID

Affiliation:

1. Department of Biology, University of Utah, Salt Lake City, UT

2. Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA

3. Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA

4. University of Puget Sound, Tacoma, WA

5. Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA

Abstract

Abstract Despite their essential role in chromosome segregation in most eukaryotes, centromeric histones (CenH3s) evolve rapidly and are subject to gene turnover. We previously identified four instances of gene duplication and specialization of Cid, which encodes for the CenH3 in Drosophila. We hypothesized that retention of specialized Cid paralogs could be selectively advantageous to resolve the intralocus conflict that occurs on essential genes like Cid, which are subject to divergent selective pressures to perform multiple functions. We proposed that intralocus conflict could be a widespread phenomenon that drives evolutionary innovation in centromeric proteins. If this were the case, we might expect to find other instances of coretention and specialization of centromeric proteins during animal evolution. Consistent with this hypothesis, we find that most mosquito species encode two CenH3 (mosqCid) genes, mosqCid1 and mosqCid2, which have been coretained for over 150 My. In addition, Aedes species encode a third mosqCid3 gene, which arose from an independent gene duplication of mosqCid1. Like Drosophila Cid paralogs, mosqCid paralogs evolve under different selective constraints and show tissue-specific expression patterns. Analysis of mosqCid N-terminal protein motifs further supports the model that mosqCid paralogs have functionally diverged. Extending our survey to other centromeric proteins, we find that all Anopheles mosquitoes encode two CAL1 paralogs, which are the chaperones that deposit CenH3 proteins at centromeres in Diptera, but a single CENP-C paralog. The ancient coretention of paralogs of centromeric proteins adds further support to the hypothesis that intralocus conflict can drive their coretention and functional specialization.

Funder

National Institutes of Health

Cancer Center Support Grant

CCSG

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3