Affiliation:
1. Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
Abstract
Abstract
The relationship between enzymes and substrates does not perfectly match the “lock and key” model, because enzymes act on molecules other than their true substrate in different catalytic reactions. Such biologically nonfunctional reactions are called “promiscuous activities.” Promiscuous activities are apparently useless, but they can be an important starting point for enzyme evolution. It has been hypothesized that enzymes with low promiscuous activity will show enhanced promiscuous activity under selection pressure and become new specialists through gene duplication. Although this is the prevailing scenario, there are two major problems: 1) it would not apply to prokaryotes because horizontal gene transfer is more significant than gene duplication and 2) there is no direct evidence that promiscuous activity is low without selection pressure. We propose a new scenario including various levels of promiscuous activity throughout a clade and horizontal gene transfer. STAY-GREEN (SGR), a chlorophyll a—Mg dechelating enzyme, has homologous genes in bacteria lacking chlorophyll. We found that some bacterial SGR homologs have much higher Mg-dechelating activities than those of green plant SGRs, while others have no activity, indicating that the level of promiscuous activity varies. A phylogenetic analysis suggests that a bacterial SGR homolog with high dechelating activity was horizontally transferred to a photosynthetic eukaryote. Some SGR homologs acted on various chlorophyll molecules that are not used as substrates by green plant SGRs, indicating that SGR acquired substrate specificity after transfer to eukaryotes. We propose that horizontal transfer of high promiscuous activity is one process of new enzyme acquisition.
Funder
Japan Society for the Promotion of Science
Publisher
Oxford University Press (OUP)
Subject
Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献