Affiliation:
1. Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ
2. Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ
Abstract
Abstract
Demographic inference using the site frequency spectrum (SFS) is a common way to understand historical events affecting genetic variation. However, most methods for estimating demography from the SFS assume random mating within populations, precluding these types of analyses in inbred populations. To address this issue, we developed a model for the expected SFS that includes inbreeding by parameterizing individual genotypes using beta-binomial distributions. We then take the convolution of these genotype probabilities to calculate the expected frequency of biallelic variants in the population. Using simulations, we evaluated the model’s ability to coestimate demography and inbreeding using one- and two-population models across a range of inbreeding levels. We also applied our method to two empirical examples, American pumas (Puma concolor) and domesticated cabbage (Brassica oleracea var. capitata), inferring models both with and without inbreeding to compare parameter estimates and model fit. Our simulations showed that we are able to accurately coestimate demographic parameters and inbreeding even for highly inbred populations (F = 0.9). In contrast, failing to include inbreeding generally resulted in inaccurate parameter estimates in simulated data and led to poor model fit in our empirical analyses. These results show that inbreeding can have a strong effect on demographic inference, a pattern that was especially noticeable for parameters involving changes in population size. Given the importance of these estimates for informing practices in conservation, agriculture, and elsewhere, our method provides an important advancement for accurately estimating the demographic histories of these species.
Funder
National Science Foundation Postdoctoral Research Fellowship
National Institute of General Medical Sciences of the National Institutes of Health
NIH
Publisher
Oxford University Press (OUP)
Subject
Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献