SLC2A12 of SLC2 Gene Family in Bird Provides Functional Compensation for the Loss of SLC2A4 Gene in Other Vertebrates

Author:

Xiong Ying12,Lei Fumin123

Affiliation:

1. Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China

2. University of Chinese Academy of Sciences, Beijing, China

3. Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China

Abstract

Abstract Avian genomes are small and lack some genes that are conserved in the genomes of most other vertebrates including nonavian sauropsids. One hypothesis stated that paralogs may provide biochemical or physiological compensation for certain gene losses; however, no functional evidence has been reported to date. By integrating evolutionary analysis, physiological genomics, and experimental gene interference, we clearly demonstrate functional compensation for gene loss. A large-scale phylogenetic analysis of over 1,400 SLC2 gene sequences identifies six new SLC2 genes from nonmammalian vertebrates and divides the SLC2 gene family into four classes. Vertebrates retain class III SLC2 genes but partially lack the more recent duplicates of classes I and II. Birds appear to have completely lost the SLC2A4 gene that encodes an important insulin-sensitive GLUT in mammals. We found strong evidence for positive selection, indicating that the N-termini of SLC2A4 and SLC2A12 have undergone diversifying selection in birds and mammals, and there is a significant correlation between SLC2A12 functionality and basal metabolic rates in endotherms. Physiological genomics have uncovered that SLC2A12 expression and allelic variants are associated with insulin sensitivity and blood glucose levels in wild birds. Functional tests have indicated that SLC2A12 abrogation causes hyperglycemia, insulin resistance, and high relative activity, thus increasing energy expenditures that resemble a diabetic phenotype. These analyses suggest that the SLC2A12 gene not only functionally compensates insulin response for SLC2A4 loss but also affects daily physical behavior and basal metabolic rate during bird evolution, highlighting that older genes retain a higher level of functional diversification.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program of the Chinese Academy of Sciences

Second Tibetan Plateau Scientific Expedition and Research

Third Xinjiang Pre-Scientific Expedition and Research Program

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3