High Nucleotide Diversity Accompanies Differential DNA Methylation in Naturally Diverging Populations

Author:

Ord James12ORCID,Gossmann Toni I3,Adrian-Kalchhauser Irene1

Affiliation:

1. Institute for Fish and Wildlife Health, University of Bern , Bern , Switzerland

2. Faculty of Biological and Environmental Sciences, University of Helsinki , Helsinki , Finland

3. Computational Systems Biology, Faculty of Biochemical and Chemical Engineering, TU Dortmund University , Dortmund , Germany

Abstract

AbstractEpigenetic mechanisms such as DNA methylation (DNAme) are thought to comprise an invaluable adaptive toolkit in the early stages of local adaptation, especially when genetic diversity is constrained. However, the link between genetic diversity and DNAme has been scarcely examined in natural populations, despite its potential to shed light on the evolutionary forces acting on methylation state. Here, we analyzed reduced-representation bisulfite sequencing and whole-genome pool-seq data from marine and freshwater stickleback populations to examine the relationship between DNAme variation (between- and within-population) and nucleotide diversity in the context of freshwater adaptation. We find that sites that are differentially methylated between populations have higher underlying standing genetic variation, with diversity higher among sites that gained methylation in freshwater than those that lost it. Strikingly, although nucleotide diversity is generally lower in the freshwater population as expected from a population bottleneck, this is not the case for sites that lost methylation, which instead have elevated nucleotide diversity in freshwater compared with marine. Subsequently, we show that nucleotide diversity is higher among sites with ancestrally variable methylation and also positively correlates with the sensitivity to environmentally induced methylation change. The results suggest that as selection on the control of methylation state becomes relaxed, so too does selection against mutations at the sites themselves. Increased epigenetic variance in a population is therefore likely to precede genetic diversification.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3