Rapid Macrosatellite Evolution Promotes X-Linked Hybrid Male Sterility in a Feline Interspecies Cross

Author:

Bredemeyer Kevin R12,Seabury Christopher M3,Stickney Mark J4,McCarrey John R5,vonHoldt Bridgett M6,Murphy William J12ORCID

Affiliation:

1. Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA

2. Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, USA

3. Veterinary Pathobiology, Texas A&M University, College Station, TX, USA

4. Veterinary Medical Teaching Hospital, Texas A&M University, College Station, TX, USA

5. Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA

6. Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA

Abstract

Abstract The sterility or inviability of hybrid offspring produced from an interspecific mating result from incompatibilities between parental genotypes that are thought to result from divergence of loci involved in epistatic interactions. However, attributes contributing to the rapid evolution of these regions also complicates their assembly, thus discovery of candidate hybrid sterility loci is difficult and has been restricted to a small number of model systems. Here we reported rapid interspecific divergence at the DXZ4 macrosatellite locus in an interspecific cross between two closely related mammalian species: the domestic cat (Felis silvestris catus) and the Jungle cat (Felis chaus). DXZ4 is an interesting candidate due to its structural complexity, copy number variability, and described role in the critical yet complex biological process of X-chromosome inactivation. However, the full structure of DXZ4 was absent or incomplete in nearly every available mammalian genome assembly given its repetitive complexity. We compared highly continuous genomes for three cat species, each containing a complete DXZ4 locus, and discovered that the felid DXZ4 locus differs substantially from the human ortholog, and that it varies in copy number between cat species. Additionally, we reported expression, methylation, and structural conformation profiles of DXZ4 and the X chromosome during stages of spermatogenesis that have been previously associated with hybrid male sterility. Collectively, these findings suggest a new role for DXZ4 in male meiosis and a mechanism for feline interspecific incompatibility through rapid satellite divergence.

Funder

Morris Animal Foundation

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3