Scalable Empirical Mixture Models That Account for Across-Site Compositional Heterogeneity

Author:

Schrempf Dominik1ORCID,Lartillot Nicolas2,Szöllősi Gergely134

Affiliation:

1. Department of Biological Physics, Eötvös University, Budapest, Hungary

2. Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université de Lyon, Villeurbanne, France

3. ELTE-MTA “Lendület” Evolutionary Genomics Research Group, Budapest, Hungary

4. Evolutionary Systems Research Group, Centre for Ecological Research, Hungarian Academy of Sciences, Tihany, Hungary

Abstract

AbstractBiochemical demands constrain the range of amino acids acceptable at specific sites resulting in across-site compositional heterogeneity of the amino acid replacement process. Phylogenetic models that disregard this heterogeneity are prone to systematic errors, which can lead to severe long-branch attraction artifacts. State-of-the-art models accounting for across-site compositional heterogeneity include the CAT model, which is computationally expensive, and empirical distribution mixture models estimated via maximum likelihood (C10–C60 models). Here, we present a new, scalable method EDCluster for finding empirical distribution mixture models involving a simple cluster analysis. The cluster analysis utilizes specific coordinate transformations which allow the detection of specialized amino acid distributions either from curated databases or from the alignment at hand. We apply EDCluster to the HOGENOM and HSSP databases in order to provide universal distribution mixture (UDM) models comprising up to 4,096 components. Detailed analyses of the UDM models demonstrate the removal of various long-branch attraction artifacts and improved performance compared with the C10–C60 models. Ready-to-use implementations of the UDM models are provided for three established software packages (IQ-TREE, Phylobayes, and RevBayes).

Funder

European Research Council under the European Union’s Horizon 2020 Research and Innovation Program

CINES

GENCI

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Reference61 articles.

1. The statistical analysis of compositional data;Aitchison;J R Stat Soc B,1982

2. An empirical assessment of long-branch attraction artefacts in deep eukaryotic phylogenomics;Brinkmann;Syst Biol,2005

3. Eukaryotes with no mitochondria;Cavalier-Smith;Nature,1987

4. WebLogo: a sequence logo generator;Crooks;Genome Res,2004

5. Tree pattern matching in phylogenetic trees: automatic search for orthologs or paralogs in homologous gene sequence databases;Dufayard;Bioinformatics,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3