Phylogeny-Aware Chemoinformatic Analysis of Chemical Diversity in Lamiaceae Enables Iridoid Pathway Assembly and Discovery of Aucubin Synthase

Author:

Rodríguez-López Carlos E.1ORCID,Jiang Yindi1,Kamileen Mohamed O.1,Lichman Benjamin R.2,Hong Benke1,Vaillancourt Brieanne3,Buell C. Robin4,O'Connor Sarah E.1

Affiliation:

1. Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany

2. Department of Biology, University of York, YO10 5DD York, UK

3. Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA

4. Department of Crop & Soil Sciences, University of Georgia, Athens, GA 30602, USA

Abstract

Abstract Countless reports describe the isolation and structural characterization of natural products, yet this information remains disconnected and underutilized. Using a cheminformatics approach, we leverage the reported observations of iridoid glucosides with the known phylogeny of a large iridoid producing plant family (Lamiaceae) to generate a set of biosynthetic pathways that best explain the extant iridoid chemical diversity. We developed a pathway reconstruction algorithm that connects iridoid reports via reactions and prunes this solution space by considering phylogenetic relationships between genera. We formulate a model that emulates the evolution of iridoid glucosides to create a synthetic data set, used to select the parameters that would best reconstruct the pathways, and apply them to the iridoid data set to generate pathway hypotheses. These computationally generated pathways were then used as the basis by which to select and screen biosynthetic enzyme candidates. Our model was successfully applied to discover a cytochrome P450 enzyme from Callicarpa americana that catalyzes the oxidation of bartsioside to aucubin, predicted by our model despite neither molecule having been observed in the genus. We also demonstrate aucubin synthase activity in orthologues of Vitex agnus-castus, and the outgroup Paulownia tomentosa, further strengthening the hypothesis, enabled by our model, that the reaction was present in the ancestral biosynthetic pathway. This is the first systematic hypothesis on the epi-iridoid glucosides biosynthesis in 25 years and sets the stage for streamlined work on the iridoid pathway. This work highlights how curation and computational analysis of widely available structural data can facilitate hypothesis-based gene discovery.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Reference87 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3