Intermolecular Interactions Drive Protein Adaptive and Coadaptive Evolution at Both Species and Population Levels

Author:

Peng Junhui1,Svetec Nicolas1ORCID,Zhao Li1ORCID

Affiliation:

1. Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA

Abstract

Abstract Proteins are the building blocks for almost all the functions in cells. Understanding the molecular evolution of proteins and the forces that shape protein evolution is essential in understanding the basis of function and evolution. Previous studies have shown that adaptation frequently occurs at the protein surface, such as in genes involved in host–pathogen interactions. However, it remains unclear whether adaptive sites are distributed randomly or at regions associated with particular structural or functional characteristics across the genome, since many proteins lack structural or functional annotations. Here, we seek to tackle this question by combining large-scale bioinformatic prediction, structural analysis, phylogenetic inference, and population genomic analysis of Drosophila protein-coding genes. We found that protein sequence adaptation is more relevant to function-related rather than structure-related properties. Interestingly, intermolecular interactions contribute significantly to protein adaptation. We further showed that intermolecular interactions, such as physical interactions, may play a role in the coadaptation of fast-adaptive proteins. We found that strongly differentiated amino acids across geographic regions in protein-coding genes are mostly adaptive, which may contribute to the long-term adaptive evolution. This strongly indicates that a number of adaptive sites tend to be repeatedly mutated and selected throughout evolution in the past, present, and maybe future. Our results highlight the important roles of intermolecular interactions and coadaptation in the adaptive evolution of proteins both at the species and population levels.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3