Parallel Concerted Evolution of Ribosomal Protein Genes in Fungi and Its Adaptive Significance

Author:

Mullis Alison1,Lu Zhaolian1,Zhan Yu1,Wang Tzi-Yuan2,Rodriguez Judith3,Rajeh Ahmad13,Chatrath Ajay1,Lin Zhenguo1ORCID

Affiliation:

1. Department of Biology, Saint Louis University, St. Louis, MO

2. Biodiversity Research Center, Academia Sinica, Nankang, Taipei, Taiwan

3. Program of Bioinformatics and Computational Biology, Saint Louis University, St. Louis, MO

Abstract

AbstractRibosomal protein (RP) genes encode structural components of ribosomes, the cellular machinery for protein synthesis. A single functional copy has been maintained in most of 78–80 RP families in animals due to evolutionary constraints imposed by gene dosage balance. Some fungal species have maintained duplicate copies in most RP families. The mechanisms by which the RP genes were duplicated and maintained and their functional significance are poorly understood. To address these questions, we identified all RP genes from 295 fungi and inferred the timing and nature of gene duplication events for all RP families. We found that massive duplications of RP genes have independently occurred by different mechanisms in three distantly related lineages: budding yeasts, fission yeasts, and Mucoromycota. The RP gene duplicates in budding yeasts and Mucoromycota were mainly created by whole genome duplication events. However, duplicate RP genes in fission yeasts were likely generated by retroposition, which is unexpected considering their dosage sensitivity. The sequences of most RP paralogs have been homogenized by repeated gene conversion in each species, demonstrating parallel concerted evolution, which might have facilitated the retention of their duplicates. Transcriptomic data suggest that the duplication and retention of RP genes increased their transcript abundance. Physiological data indicate that increased ribosome biogenesis allowed these organisms to rapidly consume sugars through fermentation while maintaining high growth rates, providing selective advantages to these species in sugar-rich environments.

Funder

President’s Research Fund

Saint Louis University

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3