Spatiotemporal Regulation of a Single Adaptively EvolvingTrans-Regulatory Element Contributes to Spermatogenetic Expression Divergence inDrosophila

Author:

Huang Yumei1ORCID,Shang Rui1,Lu Guang-An1,Zeng Weishun1,Huang Chenglong1,Zou Chuangchao1,Tang Tian1

Affiliation:

1. State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University , 510275 Guangzhou, Guangdong Province , China

Abstract

AbstractDue to extensive pleiotropy, trans-acting elements are often thought to be evolutionarily constrained. While the impact of trans-acting elements on gene expression evolution has been extensively studied, relatively little is understood about the contribution of a single trans regulator to interspecific expression and phenotypic divergence. Here, we disentangle the effects of genomic context and miR-983, an adaptively evolving young microRNA, on expression divergence between Drosophila melanogaster and D. simulans. We show miR-983 effects promote interspecific expression divergence in testis despite its antagonism with the often-predominant context effects. Single-cyst RNA-seq reveals that distinct sets of genes gain and lose miR-983 influence under disruptive or diversifying selection at different stages of spermatogenesis, potentially helping minimize antagonistic pleiotropy. At the round spermatid stage, the effects of miR-983 are weak and distributed, coincident with the transcriptome undergoing drastic expression changes. Knocking out miR-983 causes reduced sperm length with increased within-individual variation in D. melanogaster but not in D. simulans, and the D. melanogaster knockout also exhibits compromised sperm defense ability. Our results provide empirical evidence for the resolution of antagonistic pleiotropy and also have broad implications for the function and evolution of new trans regulators.

Publisher

Oxford University Press (OUP)

Subject

Process Chemistry and Technology,Economic Geology,Fuel Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3