Multiple Genetic Trajectories to Extreme Abiotic Stress Adaptation in Arctic Brassicaceae

Author:

Birkeland Siri1,Gustafsson A Lovisa S1,Brysting Anne K2,Brochmann Christian1,Nowak Michael D1

Affiliation:

1. Natural History Museum, University of Oslo, Oslo, Norway

2. Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway

Abstract

Abstract Extreme environments offer powerful opportunities to study how different organisms have adapted to similar selection pressures at the molecular level. Arctic plants have adapted to some of the coldest and driest biomes on Earth and typically possess suites of similar morphological and physiological adaptations to extremes in light and temperature. Here, we compare patterns of molecular evolution in three Brassicaceae species that have independently colonized the Arctic and present some of the first genetic evidence for plant adaptations to the Arctic environment. By testing for positive selection and identifying convergent substitutions in orthologous gene alignments for a total of 15 Brassicaceae species, we find that positive selection has been acting on different genes, but similar functional pathways in the three Arctic lineages. The positively selected gene sets identified in the three Arctic species showed convergent functional profiles associated with extreme abiotic stress characteristic of the Arctic. However, there was little evidence for independently fixed mutations at the same sites and for positive selection acting on the same genes. The three species appear to have evolved similar suites of adaptations by modifying different components in similar stress response pathways, implying that there could be many genetic trajectories for adaptation to the Arctic environment. By identifying candidate genes and functional pathways potentially involved in Arctic adaptation, our results provide a framework for future studies aimed at testing for the existence of a functional syndrome of Arctic adaptation in the Brassicaceae and perhaps flowering plants in general.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3