Divergent Evolution of a Protein–Protein Interaction Revealed through Ancestral Sequence Reconstruction and Resurrection

Author:

Laursen Louise1,Čalyševa Jelena23,Gibson Toby J2,Jemth Per1

Affiliation:

1. Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden

2. Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany

3. Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University

Abstract

Abstract The postsynaptic density extends across the postsynaptic dendritic spine with discs large (DLG) as the most abundant scaffolding protein. DLG dynamically alters the structure of the postsynaptic density, thus controlling the function and distribution of specific receptors at the synapse. DLG contains three PDZ domains and one important interaction governing postsynaptic architecture is that between the PDZ3 domain from DLG and a protein called cysteine-rich interactor of PDZ3 (CRIPT). However, little is known regarding functional evolution of the PDZ3:CRIPT interaction. Here, we subjected PDZ3 and CRIPT to ancestral sequence reconstruction, resurrection, and biophysical experiments. We show that the PDZ3:CRIPT interaction is an ancient interaction, which was likely present in the last common ancestor of Eukaryotes, and that high affinity is maintained in most extant animal phyla. However, affinity is low in nematodes and insects, raising questions about the physiological function of the interaction in species from these animal groups. Our findings demonstrate how an apparently established protein–protein interaction involved in cellular scaffolding in bilaterians can suddenly be subject to dynamic evolution including possible loss of function.

Funder

European Union’s Horizon 2020 research and innovation program

Swedish Research Council

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3