Eusociality Shapes Convergent Patterns of Molecular Evolution across Mitochondrial Genomes of Snapping Shrimps

Author:

Chak Solomon T C12,Baeza Juan Antonio345,Barden Phillip16

Affiliation:

1. Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ

2. Department of Biological Sciences, SUNY College at Old Westbury, Old Westbury, NY

3. Department of Biological Sciences, Clemson University, Clemson, SC

4. Smithsonian Institution, Smithsonian Marine Station at Fort Pierce, Fort Pierce, FL

5. Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile

6. Division of Invertebrate Zoology, American Museum of Natural History, New York, NY

Abstract

Abstract Eusociality is a highly conspicuous and ecologically impactful behavioral syndrome that has evolved independently across multiple animal lineages. So far, comparative genomic analyses of advanced sociality have been mostly limited to insects. Here, we study the only clade of animals known to exhibit eusociality in the marine realm—lineages of socially diverse snapping shrimps in the genus Synalpheus. To investigate the molecular impact of sociality, we assembled the mitochondrial genomes of eight Synalpheus species that represent three independent origins of eusociality and analyzed patterns of molecular evolution in protein-coding genes. Synonymous substitution rates are lower and potential signals of relaxed purifying selection are higher in eusocial relative to noneusocial taxa. Our results suggest that mitochondrial genome evolution was shaped by eusociality-linked traits—extended generation times and reduced effective population sizes that are hallmarks of advanced animal societies. This is the first direct evidence of eusociality impacting genome evolution in marine taxa. Our results also strongly support the idea that eusociality can shape genome evolution through profound changes in life history and demography.

Funder

New Jersey Institute of Technology

Federated Department of Biological Sciences

IST Academic and Research Computing Systems

NJIT

HPC system

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3