Long-Term Balancing Selection and the Genetic Load Linked to the Self-Incompatibility Locus in Arabidopsis halleri and A. lyrata

Author:

Le Veve Audrey12ORCID,Burghgraeve Nicolas1,Genete Mathieu1,Lepers-Blassiau Christelle1,Takou Margarita34ORCID,De Meaux Juliette3,Mable Barbara K5ORCID,Durand Eléonore1,Vekemans Xavier1,Castric Vincent1

Affiliation:

1. Univ. Lille, CNRS, UMR 8198—Evo-Eco-Paleo , Lille , France

2. Department of Botany, Faculty of Science, Charles University , Prague , Czech Republic

3. Institute of Botany, University of Cologne , Cologne , Germany

4. Department of Biology, Pennsylvania State University , PA , United States of America

5. School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow , Glasgow , United Kingdom

Abstract

Abstract Balancing selection is a form of natural selection maintaining diversity at the sites it targets and at linked nucleotide sites. Due to selection favoring heterozygosity, it has the potential to facilitate the accumulation of a “sheltered” load of tightly linked recessive deleterious mutations. However, precisely evaluating the extent of these effects has remained challenging. Taking advantage of plant self-incompatibility as one of the best-understood examples of long-term balancing selection, we provide a highly resolved picture of the genomic extent of balancing selection on the sheltered genetic load. We used targeted genome resequencing to reveal polymorphism of the genomic region flanking the self-incompatibility locus in three sample sets in each of the two closely related plant species Arabidopsis halleri and Arabidopsis lyrata, and used 100 control regions from throughout the genome to factor out differences in demographic histories and/or sample structure. Nucleotide polymorphism increased strongly around the S-locus in all sample sets, but only over a limited genomic region, as it became indistinguishable from the genomic background beyond the first 25–30 kb. Genes in this chromosomal interval exhibited no excess of mutations at 0-fold degenerated sites relative to putatively neutral sites, hence revealing no detectable weakening of the efficacy of purifying selection even for these most tightly linked genes. Overall, our results are consistent with the predictions of a narrow genomic influence of linkage to the S-locus and clarify how natural selection in one genomic region affects the evolution of the adjacent genomic regions.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3