DNA Methylation Profiles Suggest Intergenerational Transfer of Maternal Effects

Author:

Venney Clare J1ORCID,Love Oliver P2,Drown Ellen Jane3,Heath Daniel D12

Affiliation:

1. Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada

2. Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada

3. Yellow Island Aquaculture Ltd., Campbell River, British Columbia, Canada

Abstract

AbstractThe view of maternal effects (nongenetic maternal environmental influence on offspring phenotype) has changed from one of distracting complications in evolutionary genetics to an important evolutionary mechanism for improving offspring fitness. Recent studies have shown that maternal effects act as an adaptive mechanism to prepare offspring for stressful environments. Although research into the magnitude of maternal effects is abundant, the molecular mechanisms of maternal influences on offspring phenotypic variation are not fully understood. Despite recent work identifying DNA methylation as a potential mechanism of nongenetic inheritance, currently proposed links between DNA methylation and parental effects are indirect and primarily involve genomic imprinting. We combined a factorial breeding design and gene-targeted sequencing methods to assess inheritance of methylation during early life stages at 14 genes involved in growth, development, metabolism, stress response, and immune function of Chinook salmon (Oncorhynchus tshawytscha). We found little evidence for additive or nonadditive genetic effects acting on methylation levels during early development; however, we detected significant maternal effects. Consistent with conventional maternal effect data, maternal effects on methylation declined through development and were replaced with nonadditive effects when offspring began exogenous feeding. We mapped methylation at individual CpG sites across the selected candidate genes to test for variation in site-specific methylation profiles and found significant maternal effects at selected CpG sites that also declined with development stage. While intergenerational inheritance of methylated DNA is controversial, we show that CpG-specific methylation may function as an underlying molecular mechanism for maternal effects, with important implications for offspring fitness.

Funder

Yellow Island Aquaculture Ltd.

YIAL

Natural Science and Engineering Research Council Discovery

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3