Genomic Targets of Positive Selection in Giant Mice from Gough Island

Author:

Payseur Bret A1,Jing Peicheng1

Affiliation:

1. Laboratory of Genetics, University of Wisconsin – Madison, Madison, WI

Abstract

Abstract A key challenge in understanding how organisms adapt to their environments is to identify the mutations and genes that make it possible. By comparing patterns of sequence variation to neutral predictions across genomes, the targets of positive selection can be located. We applied this logic to house mice that invaded Gough Island (GI), an unusual population that shows phenotypic and ecological hallmarks of selection. We used massively parallel short-read sequencing to survey the genomes of 14 GI mice. We computed a set of summary statistics to capture diverse aspects of variation across these genome sequences, used approximate Bayesian computation to reconstruct a null demographic model, and then applied machine learning to estimate the posterior probability of positive selection in each region of the genome. Using a conservative threshold, 1,463 5-kb windows show strong evidence for positive selection in GI mice but not in a mainland reference population of German mice. Disproportionate shares of these selection windows contain genes that harbor derived nonsynonymous mutations with large frequency differences. Over-represented gene ontologies in selection windows emphasize neurological themes. Inspection of genomic regions harboring many selection windows with high posterior probabilities pointed to genes with known effects on exploratory behavior and body size as potential targets. Some genes in these regions contain candidate adaptive variants, including missense mutations and/or putative regulatory mutations. Our results provide a genomic portrait of adaptation to island conditions and position GI mice as a powerful system for understanding the genetic component of natural selection.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3