Elaboration of the Corticosteroid Synthesis Pathway in Primates through a Multistep Enzyme

Author:

Olson-Manning Carrie F12

Affiliation:

1. Department of Biology, Augustana University, Sioux Falls, SD

2. Department of Ecology and Evolution, University of Chicago, Chicago, IL

Abstract

AbstractMetabolic networks are complex cellular systems dependent on the interactions among, and regulation of, the enzymes in the network. Although there is great diversity of types of enzymes that make up metabolic networks, the models meant to understand the possible evolutionary outcomes following duplication neglect specifics about the enzyme, pathway context, and cellular constraints. To illuminate the mechanisms that shape the evolution of biochemical pathways, I functionally characterize the consequences of gene duplication of an enzyme family that performs multiple subsequent enzymatic reactions (a multistep enzyme) in the corticosteroid pathway in primates. The products of the corticosteroid pathway (aldosterone and cortisol) are steroid hormones that regulate metabolism and stress response in tetrapods. These steroid hormones are synthesized by a multistep enzyme Cytochrome P450 11B (CYP11B) that performs subsequent steps on different carbon atoms of the steroid derivatives. Through ancestral state reconstruction and in vitro characterization, I find that the primate ancestor of the CYP11B1 and CYP11B2 paralogs had moderate ability to synthesize both cortisol and aldosterone. Following duplication in Old World primates, the CYP11B1 homolog specialized on the production of cortisol, whereas its paralog, CYP11B2, maintained its ability to perform multiple subsequent steps as in the ancestral pathway. Unlike CYP11B1, CYP11B2 could not specialize on the production of aldosterone because it is constrained to perform earlier steps in the corticosteroid synthesis pathway to achieve the final product aldosterone. These results suggest that enzyme function, pathway context, along with tissue-specific regulation, both play a role in shaping potential outcomes of metabolic network elaboration.

Funder

the National Institutes of Health

National Institutes of Health

NIH

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3