Early Stage Adaptation of a Mesophilic Green Alga to Antarctica: Systematic Increases in Abundance of Enzymes and LEA Proteins

Author:

Wang Yali12,Liu Xiaoxiang1,Gao Hong12,Zhang Hong-Mei3,Guo An-Yuan3,Xu Jian4,Xu Xudong12

Affiliation:

1. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China

2. Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China

3. College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China

4. Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China

Abstract

Abstract It is known that adaptive evolution in permanently cold environments drives cold adaptation in enzymes. However, how the relatively high enzyme activities were achieved in cold environments prior to cold adaptation of enzymes is unclear. Here we report that an Antarctic strain of Chlorella vulgaris, called NJ-7, acquired the capability to grow at near 0 °C temperatures and greatly enhanced freezing tolerance after systematic increases in abundance of enzymes/proteins and positive selection of certain genes. Having diverged from the temperate strain UTEX259 of the same species 2.5 (1.1–4.1) to 2.6 (1.0–4.5) Ma, NJ-7 retained the basic mesophilic characteristics and genome structures. Nitrate reductases in the two strains are highly similar in amino acid sequence and optimal temperature, but the NJ-7 one showed significantly higher abundance and activity. Quantitative proteomic analyses indicated that several cryoprotective proteins (LEA), many enzymes involved in carbon metabolism and a large number of other enzymes/proteins, were more abundant in NJ-7 than in UTEX259. Like nitrate reductase, most of these enzymes were not upregulated in response to cold stress. Thus, compensation of low specific activities by increased enzyme abundance appears to be an important strategy for early stage cold adaptation to Antarctica, but such enzymes are mostly not involved in cold acclimation upon transfer from favorable temperatures to near 0 °C temperatures.

Funder

Knowledge Innovation Project of Hubei Province

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3