The Theory and Applications of Measuring Broad-Range and Chromosome-Wide Recombination Rate from Allele Frequency Decay around a Selected Locus

Author:

Wei Kevin H -C1ORCID,Mantha Aditya1,Bachtrog Doris1ORCID

Affiliation:

1. Department of Integrative Biology, University of California Berkeley, Berkeley, CA

Abstract

AbstractRecombination is the exchange of genetic material between homologous chromosomes via physical crossovers. High-throughput sequencing approaches detect crossovers genome wide to produce recombination rate maps but are difficult to scale as they require large numbers of recombinants individually sequenced. We present a simple and scalable pooled-sequencing approach to experimentally infer near chromosome-wide recombination rates by taking advantage of non-Mendelian allele frequency generated from a fitness differential at a locus under selection. As more crossovers decouple the selected locus from distal loci, the distorted allele frequency attenuates distally toward Mendelian and can be used to estimate the genetic distance. Here, we use marker selection to generate distorted allele frequency and theoretically derive the mathematical relationships between allele frequency attenuation, genetic distance, and recombination rate in marker-selected pools. We implemented nonlinear curve-fitting methods that robustly estimate the allele frequency decay from batch sequencing of pooled individuals and derive chromosome-wide genetic distance and recombination rates. Empirically, we show that marker-selected pools closely recapitulate genetic distances inferred from scoring recombinants. Using this method, we generated novel recombination rate maps of three wild-derived strains of Drosophila melanogaster, which strongly correlate with previous measurements. Moreover, we show that this approach can be extended to estimate chromosome-wide crossover interference with reciprocal marker selection and discuss how it can be applied in the absence of visible markers. Altogether, we find that our method is a simple and cost-effective approach to generate chromosome-wide recombination rate maps requiring only one or two libraries.

Funder

National Institute of General Medical Sciences at the NIH

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3