Assessing cure status prediction from survival data using receiver operating characteristic curves

Author:

Amico M1,Van Keilegom I1,Han B1

Affiliation:

1. Research Centre for Operations Research and Statistics, KU Leuven, Naamsestaat 69, 3000 Leuven, Belgium mailis.amico@kuleuven.be  ingrid.vankeilegom@kuleuven.be  bo.han1949@gmail.com

Abstract

Summary Survival analysis relies on the hypothesis that, if the follow-up is long enough, the event of interest will eventually be observed for all observations. This assumption, however, is often not realistic. The survival data then contain a cure fraction. A common approach to modelling and analysing this type of data consists in using cure models. Two types of information can therefore be obtained: the survival at a given time and the cure status, both possibly modelled as a function of the covariates. The cure status is often of interest to medical practitioners, and one is usually interested in predicting it based on markers. Receiver operating characteristic, Roc, curves are one way to evaluate the predicted performance; however, the classical Roc curve method is not appropriate since the cure status is partially unobserved due to the presence of censoring in survival data. We propose a Roc curve estimator that aims to evaluate the cured/noncured status classification performance from cure survival data. This estimator, which handles the presence of censoring, decomposes sensitivity and specificity by means of the definition of conditional probability, and estimates these two quantities by means of weighted empirical distribution functions. The mixture cure model is used to calculate the weights. Based on simulations, we demonstrate good performance of the proposed method, and compare it with the classical Roc curve nonparametric estimator that would be obtained if the cure status was fully observed. We also compare our proposed method with the Roc curves of Heagerty et al. (2000) for classical survival analysis. Finally, we illustrate the methodology on a breast cancer dataset.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous),General Mathematics,Statistics and Probability

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3