Identifiability and estimation of structural vector autoregressive models for subsampled and mixed-frequency time series

Author:

Tank A1,Fox E B1,Shojaie A2

Affiliation:

1. Department of Statistics, University of Washington, Box 354322, Seattle, Washington 98195, USA

2. Department of Biostatistics, University of Washington, Box 357232, Seattle, Washington 98195, USA

Abstract

Summary Causal inference in multivariate time series is challenging because the sampling rate may not be as fast as the time scale of the causal interactions, so the observed series is a subsampled version of the desired series. Furthermore, series may be observed at different sampling rates, yielding mixed-frequency series. To determine instantaneous and lagged effects between series at the causal scale, we take a model-based approach that relies on structural vector autoregressive models. We present a unifying framework for parameter identifiability and estimation under subsampling and mixed frequencies when the noise, or shocks, is non-Gaussian. By studying the structural case, we develop identifiability and estimation methods for the causal structure of lagged and instantaneous effects at the desired time scale. We further derive an exact expectation-maximization algorithm for inference in both subsampled and mixed-frequency settings. We validate our approach in simulated scenarios and on a climate and an econometric dataset.

Funder

National Science Foundation

National Institutes of Health

Air Force Office of Scientific Research

Office of Naval Research

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous),General Mathematics,Statistics and Probability

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3