Heterogeneity-aware and communication-efficient distributed statistical inference

Author:

Duan Rui,Ning Yang,Chen Yong

Abstract

Summary In multicentre research, individual-level data are often protected against sharing across sites. To overcome the barrier of data sharing, many distributed algorithms, which only require sharing aggregated information, have been developed. The existing distributed algorithms usually assume the data are homogeneously distributed across sites. This assumption ignores the important fact that the data collected at different sites may come from various subpopulations and environments, which can lead to heterogeneity in the distribution of the data. Ignoring the heterogeneity may lead to erroneous statistical inference. We propose distributed algorithms which account for the heterogeneous distributions by allowing site-specific nuisance parameters. The proposed methods extend the surrogate likelihood approach (Wang et al. 2017; Jordan et al. 2018) to the heterogeneous setting by applying a novel density ratio tilting method to the efficient score function. The proposed algorithms maintain the same communication cost as existing communication-efficient algorithms. We establish a nonasymptotic risk bound for the proposed distributed estimator and its limiting distribution in the two-index asymptotic setting, which allows both sample size per site and the number of sites to go to infinity. In addition, we show that the asymptotic variance of the estimator attains the Cramér–Rao lower bound when the number of sites is smaller in rate than the sample size at each site. Finally, we use simulation studies and a real data application to demonstrate the validity and feasibility of the proposed methods.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous),General Mathematics,Statistics and Probability

Reference30 articles.

1. Privacy, confidentiality, and electronic medical records;Barrows,;J. Am. Med. Informatics Assoc.,1996

2. Distributed testing and estimation under sparse high dimensional models;Battey,;Ann. Statist.,2018

3. A split-and-conquer approach for analysis of extraordinarily large data;Chen,;Statist. Sinica,2014

4. Conducting multicenter research in healthcare simulation: Lessons learned from the inspire network;Cheng,;Adv. Simul.,2017

5. Meta-analysis in clinical trials;DerSimonian,;Contr. Clin. Trials,1986

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3