On the implied weights of linear regression for causal inference

Author:

Chattopadhyay Ambarish1,Zubizarreta José R2

Affiliation:

1. Stanford Data Science, Stanford University , 450 Jane Stanford Way, Wallenberg Hall, Stanford, California 94305, U.S.A

2. Harvard University Departments of Health Care Policy, Biostatistics, and Statistics, , 180 A Longwood Avenue, Boston, Massachusetts 02115, USA

Abstract

Summary A basic principle in the design of observational studies is to approximate the randomized experiment that would have been conducted under ideal circumstances. At present, linear regression models are commonly used to analyse observational data and estimate causal effects. How do linear regression adjustments in observational studies emulate key features of randomized experiments, such as covariate balance, self-weighted sampling and study representativeness? In this paper, we provide answers to this and related questions by analysing the implied individual-level data weights of various linear regression methods. We derive new closed-form expressions of these implied weights, and examine their properties in both finite and large samples. Among others, in finite samples we characterize the implied target population of linear regression, and in large samples demonstrate the multiply robust properties of regression estimators from the perspective of their implied weights. We show that the implied weights of general regression methods can be equivalently obtained by solving a convex optimization problem. This equivalence allows us to bridge ideas from the regression modelling and causal inference literatures. As a result, we propose novel regression diagnostics for causal inference that are part of the design stage of an observational study. We implement the weights and diagnostics in the new lmw package for R.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous),General Mathematics,Statistics and Probability

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3