E-values as unnormalized weights in multiple testing

Author:

Ignatiadis Nikolaos1ORCID,Wang Ruodu2ORCID,Ramdas Aaditya3ORCID

Affiliation:

1. Department of Statistics and Data Science Institute, University of Chicago , 5747 South Ellis Avenue , Chicago, Illinois 60637, U.S.A

2. Department of Statistics and Actuarial Science, University of Waterloo , 200 University Avenue West , Waterloo, Ontario N2L 3G1, Canada

3. Department of Statistics & Data Science, Carnegie Mellon University , 132H Baker Hall , Pittsburgh, Pennsylvania 15213, U.S.A

Abstract

Summary We study how to combine p-values and e-values, and design multiple testing procedures where both p-values and e-values are available for every hypothesis. Our results provide a new perspective on multiple testing with data-driven weights: while standard weighted multiple testing methods require the weights to deterministically add up to the number of hypotheses being tested, we show that this normalization is not required when the weights are e-values that are independent of the p-values. Such e-values can be obtained in meta-analysis where a primary dataset is used to compute p-values, and an independent secondary dataset is used to compute e-values. Going beyond meta-analysis, we showcase settings wherein independent e-values and p-values can be constructed on a single dataset itself. Our procedures can result in a substantial increase in power, especially if the nonnull hypotheses have e-values much larger than one.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous),General Mathematics,Statistics and Probability

Reference60 articles.

1. The p-filter: multilayer false discovery rate control for grouped hypotheses;Barber;J. R. Statist. Soc. B,2017

2. On statistics independent of a complete sufficient statistic;Basu;Sankhya,1955

3. Controlling the false discovery rate: a practical and powerful approach to multiple testing;Benjamini;J. R. Statist. Soc. B,1995

4. Multiple hypotheses testing with weights;Benjamini;Scand. J. Statist,1997

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Post-selection inference for e-value based confidence intervals;Electronic Journal of Statistics;2024-01-01

2. Merging sequential e-values via martingales;Electronic Journal of Statistics;2024-01-01

3. Game-Theoretic Statistics and Safe Anytime-Valid Inference;Statistical Science;2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3