Splitting strategies for post-selection inference

Author:

Rasines D García1ORCID,Young G A1

Affiliation:

1. Department of Mathematics, Imperial College London , London SW7 2AZ, U.K

Abstract

Summary We consider the problem of providing valid inference for a selected parameter in a sparse regression setting. It is well known that classical regression tools can be unreliable in this context because of the bias generated in the selection step. Many approaches have been proposed in recent years to ensure inferential validity. In this article we consider a simple alternative to data splitting based on randomizing the response vector, which allows for higher selection and inferential power than the former, and is applicable with an arbitrary selection rule. We perform a theoretical and empirical comparison of the two methods and derive a central limit theorem for the randomization approach. Our investigations show that the gain in power can be substantial.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous),General Mathematics,Statistics and Probability

Reference35 articles.

1. Valid confidence intervals for post-model-selection predictors;Bachoc,;Ann. Statist,2017

2. Uniformly valid confidence intervals post-model-selection;Bachoc,;Ann. Statist.,2020

3. Controlling the false discovery rate via knockoffs;Barber,;Ann. Statist.,2015

4. knockoff: The Knockoff Filter for Controlled Variable Selection;Barber,;R package version 0.3.3,2020

5. Estimating LASSO risk and noise level;Bayati,,2013

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generalized Data Thinning Using Sufficient Statistics;Journal of the American Statistical Association;2024-06-13

2. Exact selective inference with randomization;Biometrika;2024-04-03

3. On Selecting and Conditioning in Multiple Testing and Selective Inference;Biometrika;2023-12-22

4. Carving model-free inference;The Annals of Statistics;2023-12-01

5. Data Fission: Splitting a Single Data Point;Journal of the American Statistical Association;2023-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3