Network community detection using higher-order structures

Author:

Yu X1,Zhu J1

Affiliation:

1. Department of Statistics, University of Michigan , 1085 South University Avenue , Ann Arbor, Michigan 48109, U.S.A

Abstract

Summary In many real-world networks, it is often observed that subgraphs or higher-order structures of certain configurations, e.g., triangles and by-fans, are overly abundant compared to standard randomly generated networks (Milo et al., 2002). However, statistical models accounting for this phenomenon are limited, especially when community structure is of interest. This limitation is coupled with a lack of community detection methods that leverage subgraphs or higher-order structures. In this paper, we propose a new community detection method that effectively uses higher-order structures in a network. Furthermore, for the community detection accuracy, under an edge-dependent network model that consists of both community and triangle structures, we develop a finite-sample error bound characterized by the expected triangle degree, which leads to the consistency of the proposed method. To the best of our knowledge, this is the first statistical error bound and consistency result for community detection of a single network considering a network model with dependent edges. We also show, in both simulation studies and a real-world data example, that our method unveils network communities that are otherwise invisible to methods that ignore higher-order structures.

Publisher

Oxford University Press (OUP)

Reference44 articles.

1. Mixed membership stochastic blockmodels;Airoldi;J. Mach. Learn. Res.,2008

2. Network motifs: theory and experimental approaches;Alon;Nature Rev. Genet,2007

3. Pseudo-likelihood methods for community detection in large sparse networks;Amini;Ann. Statist.,2013

4. Motif-based communities in complex networks;Arenas;J. Phys A,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3