Poisson reduced-rank models with an application to political text data

Author:

Jentsch Carsten1,Lee Eun Ryung2,Mammen Enno3

Affiliation:

1. Department of Statistics, TU Dortmund University, 44221 Dortmund, Germany

2. Department of Statistics, Sungkyunkwan University, 25-2, Sungkyunkwan-ro, Jongno-gu, Seoul 03063, South Korea

3. Institute of Applied Mathematics, Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany

Abstract

Summary We discuss Poisson reduced-rank models for low-dimensional summaries of high-dimensional Poisson vectors that allow inference on the location of individuals in a low-dimensional space. We show that under weak dependence conditions, which allow for certain correlations between the Poisson random variables, the locations can be consistently estimated using Poisson maximum likelihood estimation. Moreover, we develop consistent rules for determining the dimension of the location from the discrete data. Our main motivation for studying Poisson reduced-rank models arises from applications to political text data, where word counts in a political document are modelled by Poisson random variables. We apply our method to party manifesto data taken from German political parties across seven federal elections following German reunification, to make statistical inferences on the multi-dimensional evolution of party positions.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous),General Mathematics,Statistics and Probability

Reference45 articles.

1. Eigenvalue ratio test for the number of factors;Ahn,;Econometrica,2013

2. A spectral algorithm for latent Dirichlet allocation;Anandkumar,;Advances in Neural Information Processing Systems 25 (NIPS 2012),2012

3. Tensor decompositions for learning latent variable models;Anandkumar,;J. Mach. Learn. Res.,2014

4. Statistical inference in factor analysis;Anderson,;Proc. 3rd Berkeley Sympos. Math. Statist. Prob.,1956

5. Inferential theory for factor models of large dimensions;Bai,;Econometrica,2003

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Factor Augmented Inverse Regression and its Application to Microbiome Data Analysis;Journal of the American Statistical Association;2023-08-04

2. Predicting movie ratings using Korean reviews with multinomial inverse regression;Korean Journal of Applied Statistics;2023-06-30

3. Low-Rank Regression Models for Multiple Binary Responses and their Applications to Cancer Cell-Line Encyclopedia Data;Journal of the American Statistical Association;2022-09-20

4. A Zero-Inflated Logistic Normal Multinomial Model for Extracting Microbial Compositions;Journal of the American Statistical Association;2022-03-23

5. Poisson reduced-rank models with sparse loadings;Journal of the Korean Statistical Society;2021-02-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3