Bagging cross-validated bandwidths with application to big data

Author:

Barreiro-Ures D1,Cao R1,Francisco-Fernández M1,Hart J D2

Affiliation:

1. Departamento de Matemáticas, Facultade de Informática, CITIC, Universidade da Coruña, Campus de Elviña, 15071 A Coruña, Spain

2. Department of Statistics, Texas A&M University, College Station, Texas 77843, U.S.A

Abstract

Summary Hall & Robinson (2009) proposed and analysed the use of bagged cross-validation to choose the bandwidth of a kernel density estimator. They established that bagging greatly reduces the noise inherent in ordinary cross-validation, and hence leads to a more efficient bandwidth selector. The asymptotic theory of Hall & Robinson (2009) assumes that $N$, the number of bagged subsamples, is $\infty$. We expand upon their theoretical results by allowing $N$ to be finite, as it is in practice. Our results indicate an important difference in the rate of convergence of the bagged cross-validation bandwidth for the cases $N=\infty$ and $N<\infty$. Simulations quantify the improvement in statistical efficiency and computational speed that can result from using bagged cross-validation as opposed to a binned implementation of ordinary cross-validation. The performance of the bagged bandwidth is also illustrated on a real, very large, dataset. Finally, a byproduct of our study is the correction of errors appearing in the Hall & Robinson (2009) expression for the asymptotic mean squared error of the bagging selector.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous),General Mathematics,Statistics and Probability

Reference25 articles.

1. baggedcv: Bagged cross-validation for kernel density bandwidth selection;Barreiro-Ures,;R package version 1.0,2019

2. Partitioned cross-validation for divide-and conquer density estimation;Bhattacharya,,2016

3. Bootstrapping the mean integrated squared error;Cao,;J. Mult. Anal.,1993

4. A note on modified cross-validation in density estimation;Feluch,;Comp. Statist. Data Anal.,1992

5. On bagging and nonlinear estimation;Friedman,;J. Statist. Plan. Infer.,2007

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Improved Bayesian Learner Based on Optimized Kernel Density Estimation and Wasserstein Soft Ensemble Strategy;2023 IEEE 12th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS);2023-09-07

2. Computational Efficiency of Bagging Bootstrap Bandwidth Selection for Density Estimation with Big Data;Trends in Mathematical, Information and Data Sciences;2022-06-28

3. baggingbwsel: Bagging Bandwidth Selection in Kernel Density and Regression Estimation;CRAN: Contributed Packages;2021-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3