Projective independence tests in high dimensions: the curses and the cures

Author:

Zhang Yaowu1ORCID,Zhu Liping2

Affiliation:

1. School of Information Management and Engineering, Shanghai University of Finance and Economics , 318 Wuchuan Road , Shanghai 200433, China

2. Institute of Statistics and Big Data, Renmin University of China , 59 Zhongguancun Street , Beijing 100872, China

Abstract

Summary Testing independence between high-dimensional random vectors is fundamentally different from testing independence between univariate random variables. Taking the projection correlation as an example, it suffers from at least three problems. First, it has a high computational complexity of O{n3(p+q)}, where n, p and q are the sample size and dimensions of the random vectors; this limits its usefulness substantially when n is extremely large. Second, the asymptotic null distribution of the projection correlation test is rarely tractable; therefore, random permutations are often suggested as a means of approximating the asymptotic null distribution, which further increases the complexity of implementing independence tests. Third, the power performance of the projection correlation test deteriorates in high dimensions. To address these issues, the projection correlation is improved by using a modified weight function, which reduces the complexity to O{n2(p+q)}. We estimate the improved projection correlation with U-statistic theory. Importantly, its asymptotic null distribution is standard normal, thanks to the high dimesnionality of the random vectors. This expedites the implementation of independence tests substantially. To enhance the power performance in high dimensions, we propose incorporating a cross-validation procedure with feature screening into the projection correlation test. The implementation efficacy and power enhancement are confirmed through extensive numerical studies.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous),General Mathematics,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3