An eigenvector-assisted estimation framework for signal-plus-noise matrix models

Author:

Xie Fangzheng1ORCID,Wu Dingbo1

Affiliation:

1. Department of Statistics, Indiana University , Myles Brand Hall E104, 901 E. 10th Street , Bloomington, Indiana 47408, USA

Abstract

Summary In this paper, we develop an eigenvector-assisted estimation framework for a collection of signal-plus-noise matrix models arising in high-dimensional statistics and many applications. The framework is built upon a novel asymptotically unbiased estimating equation using the leading eigenvectors of the data matrix. However, the estimator obtained by directly solving the estimating equation could be numerically unstable in practice and lacks robustness against model misspecification. We propose to use the quasi-posterior distribution by exponentiating a criterion function whose maximizer coincides with the estimating equation estimator. The proposed framework can incorporate heteroskedastic variance information, but does not require the complete specification of the sampling distribution and is also robust to the potential misspecification of the distribution of the noise matrix. Computationally, the quasi-posterior distribution can be obtained via a Markov chain Monte Carlo sampler, which exhibits superior numerical stability over some of the existing optimization-based estimators and is straightforward for uncertainty quantification. Under mild regularity conditions, we establish the large sample properties of the quasi-posterior distributions. In particular, the quasi-posterior credible sets have the correct frequentist nominal coverage probability provided that the criterion function is carefully selected. The validity and usefulness of the proposed framework are demonstrated through the analysis of synthetic datasets and the real-world ENZYMES network datasets.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous),General Mathematics,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3