Bootstrapping Whittle estimators

Author:

Kreiss J -P1,Paparoditis E2

Affiliation:

1. Technische Universität Braunschweig, Universitätsplatz 2 Institut für Mathematische Stochastik, , D-38106 Braunschweig, Germany

2. University of Cyprus Department of Mathematics and Statistics, , University Avenue 1, 1678 Nicosia, Cyprus

Abstract

Summary Fitting parametric models by optimizing frequency-domain objective functions is an attractive approach of parameter estimation in time series analysis. Whittle estimators are a prominent example in this context. Under weak conditions and the assumption that the true spectral density of the underlying process does not necessarily belong to the parametric class of spectral densities fitted, the distribution of Whittle estimators typically depends on difficult to estimate characteristics of the underlying process. This makes the implementation of asymptotic results for the construction of confidence intervals or for assessing the variability of estimators difficult in practice. In this paper we propose a frequency-domain bootstrap method to estimate the distribution of Whittle estimators that is asymptotically valid under assumptions that not only allow for possible model misspecification, but also for weak dependence conditions that are satisfied by a wide range of stationary stochastic processes. Adaptations of the bootstrap procedure developed to incorporate different modifications of Whittle estimators proposed in the literature, such as, for instance, tapered, debiased or boundary extended Whittle estimators, are also considered. Simulations demonstrate the capabilities of the bootstrap method proposed and its good finite sample performance. A real-life data analysis on sunspots is also presented.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous),General Mathematics,Statistics and Probability

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3