Extended stochastic gradient Markov chain Monte Carlo for large-scale Bayesian variable selection

Author:

Song Qifan1,Sun Yan1,Ye Mao1,Liang Faming1

Affiliation:

1. Department of Statistics, Purdue University, 250 N. University St., West Lafayette, Indiana 47906, U.S.A

Abstract

Summary Stochastic gradient Markov chain Monte Carlo algorithms have received much attention in Bayesian computing for big data problems, but they are only applicable to a small class of problems for which the parameter space has a fixed dimension and the log-posterior density is differentiable with respect to the parameters. This paper proposes an extended stochastic gradient Markov chain Monte Carlo algorithm which, by introducing appropriate latent variables, can be applied to more general large-scale Bayesian computing problems, such as those involving dimension jumping and missing data. Numerical studies show that the proposed algorithm is highly scalable and much more efficient than traditional Markov chain Monte Carlo algorithms.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous),General Mathematics,Statistics and Probability

Reference29 articles.

1. Bayesian posterior sampling via stochastic gradient Fisher scoring;Ahn,;Proc. 29th Int. Conf. Mach. Learn.,2012

2. Optimal predictive model selection;Barbieri,;Ann. Statist.,2004

3. Towards scaling up Markov chain Monte Carlo: An adaptive subsampling approach;Bardenet,;Proc. Mach. Learn. Res.,2014

4. On Markov chain Monte Carlo methods for tall data;Bardenet,;J. Mach. Learn. Res.,2017

5. The fundamental incompatibility of scalable Hamiltonian Monte Carlo and naive data subsampling;Betancourt,;Proc. Mach. Learn. Res.,2015

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3