Unbiased Hamiltonian Monte Carlo with couplings

Author:

Heng J1,Jacob P E2

Affiliation:

1. ESSEC Business School, 5 Nepal Park, Singapore 139408, Republic of Singapore

2. Department of Statistics, Harvard University, 1 Oxford Street, Cambridge, Massachusetts 02138, USA

Abstract

Summary We propose a method for parallelization of Hamiltonian Monte Carlo estimators. Our approach involves constructing a pair of Hamiltonian Monte Carlo chains that are coupled in such a way that they meet exactly after some random number of iterations. These chains can then be combined so that the resulting estimators are unbiased. This allows us to produce independent replicates in parallel and average them to obtain estimators that are consistent in the limit of the number of replicates, rather than in the usual limit of the number of Markov chain iterations. We investigate the scalability of our coupling in high dimensions on a toy example. The choice of algorithmic parameters and the efficiency of our proposed approach are then illustrated on a logistic regression with 300 covariates and a log-Gaussian Cox point processes model with low- to fine-grained discretizations.

Funder

Division of Science Research Computing Group at Harvard University

National Science Foundation

Army Research Office

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous),General Mathematics,Statistics and Probability

Reference47 articles.

1. Optimal tuning of the hybrid Monte Carlo algorithm;Beskos,;Bernoulli,2013

2. A conceptual introduction to Hamiltonian Monte Carlo;Betancourt,,2017

3. The geometric foundations of Hamiltonian Monte Carlo;Betancourt,;Bernoulli,2017

4. Coupling and convergence for Hamiltonian Monte Carlo;Bou-Rabee,,2018

5. Geometric integrators and the Hamiltonian Monte Carlo method;Bou-Rabee,;Acta Numer.,2018

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Metropolis–Hastings transition kernel couplings;Annales de l'Institut Henri Poincaré, Probabilités et Statistiques;2024-05-01

2. Mixing of Metropolis-adjusted Markov chains via couplings: The high acceptance regime;Electronic Journal of Probability;2024-01-01

3. Nested Rˆ: Assessing the Convergence of Markov Chain Monte Carlo When Running Many Short Chains;Bayesian Analysis;2024-01-01

4. Unbiased Estimation Using Underdamped Langevin Dynamics;SIAM Journal on Scientific Computing;2023-12-05

5. Bounding Wasserstein Distance with Couplings;Journal of the American Statistical Association;2023-11-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3