Bayesian local extremum splines

Author:

Wheeler M W1,Dunson D B2,Herring A H2

Affiliation:

1. National Institute for Occupational Safety and Health, 1150 Tusculum Avenue, MS C-15, Cincinnati, Ohio 45226, U.S.A. mwheeler@cdc.gov

2. Department of Statistical Science, Duke University, Box 90251, Durham, North Carolina 27708, U.S.A. dunson@duke.edu amy.herring@duke.edu

Abstract

SummaryWe consider shape-restricted nonparametric regression on a closed set $\mathcal{X} \subset \mathbb{R},$ where it is reasonable to assume that the function has no more than $H$ local extrema interior to $\mathcal{X}$. Following a Bayesian approach we develop a nonparametric prior over a novel class of local extremum splines. This approach is shown to be consistent when modelling any continuously differentiable function within the class considered, and we use itto develop methods for testing hypotheses on the shape of the curve. Sampling algorithms are developed, and the method is applied in simulation studies and data examples where the shape of the curve is of interest.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous),General Mathematics,Statistics and Probability

Reference32 articles.

1. Testing convex hypotheses on the mean of a Gaussian vector: Application to testing qualitative hypotheses on a regression function.;Baraud,;Ann. Statist.,2005

2. Adaptive Bayesian regression splines in semiparametric generalized linear models.;Biller,;J. Comp. Graph. Statist.,2000

3. Bayesian nonparametric estimation of continuous monotone functions with applications to dose–response analysis.;Bornkamp,;Biometrics,2009

4. On posterior consistency in nonparametric regression problems.;Choi,;J. Mult. Anal.,2007

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3