A novel Nlrp3 knock-in mouse model with hyperactive inflammasome in development of lethal inflammation

Author:

Zhou Yongting1ORCID,Yang Xiyue1,Zhu Lei1

Affiliation:

1. Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College; Medical Epigenetics Research Center, Chinese Academy of Medical Sciences , Beijing , PR China

Abstract

Abstract NOD-like receptor family, pyrin domain-containing 3 (NLRP3) is a central protein contributing to human inflammatory disorders, including cryopyrin-associated periodic syndrome and sepsis. However, the molecular mechanisms and functions of NLRP3 activation in various diseases remain unknown. Here, we generated gain-of-function knock-in mice associated with Muckle–Wells syndromes using the Cre-LoxP system allowing for the constitutive T346M mutation of NLRP3 to be globally expressed in all cells under the control of tamoxifen. The mice were treated with tamoxifen for 4 days before determining their genotype by PCR and sequence analysis. In vitro, we found that bone marrow-derived macrophage from homozygous T346M mutation mice displayed a robust ability to produce IL-1β in response to lipopolysaccharide exposure. Moreover, ASC specks and oligomerization were observed in the homozygous mutant bone marrow-derived macrophages in the presence of lipopolysaccharides alone. Mechanistically, K+ and Ca2+ depletion and mitochondrial depolarization contribute to the hyperactivation of mutant NLRP3. In vivo, homozygous mice carrying the T346M mutation exhibit weight loss and mild inflammation in the resting state. In the lipopolysaccharide-mediated sepsis model, homozygous mutant mice exhibited higher mortality and increased serum circulating cytokine levels, accompanied by serious liver injury. Furthermore, an increase in myeloid cells in the spleen has been suggested to be a risk factor for inducing sepsis sensitivity. Altogether, we describe a cryopyrin-associated syndrome animal model with the T346M mutation of NLRP3 and suggest that the hyperactivated inflammasome aggregated by the mutant NLRP3 lowers the inflammatory response threshold both in vitro and in vivo.

Funder

National Key Technology R&D Program, Ministry of Science and Technology

National High Level Hospital Clinical Research Funding

Medical Sciences Innovation Fund

Chinese Academy of Medical Sciences

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3