Leucine-rich repeat kinase 2 promotes the development of experimental severe acute pancreatitis

Author:

Otsuka Yasuo1,Hara Akane1,Minaga Kosuke1,Sekai Ikue1,Kurimoto Masayuki1,Masuta Yasuhiro1,Takada Ryutaro1,Yoshikawa Tomoe1,Kamata Ken1,Kudo Masatoshi1,Watanabe Tomohiro1ORCID

Affiliation:

1. Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine , Osaka-Sayama, Osaka , Japan

Abstract

Abstract Translocation of gut bacteria into the pancreas promotes the development of severe acute pancreatitis (SAP). Recent clinical studies have also highlighted the association between fungal infections and SAP. The sensing of gut bacteria by pattern recognition receptors promotes the development of SAP via the production of proinflammatory cytokines; however, the mechanism by which gut fungi mediate SAP remains largely unknown. Leucine-rich repeat kinase 2 (LRRK2) is a multifunctional protein that regulates innate immunity against fungi via Dectin-1 activation. Here, we investigated the role of LRRK2 in SAP development and observed that administration of LRRK2 inhibitors attenuated SAP development. The degree of SAP was greater in Lrrk2 transgenic (Tg) mice than in control mice and was accompanied by an increased production of nuclear factor-kappaB-dependent proinflammatory cytokines. Ablation of the fungal mycobiome by anti-fungal drugs inhibited SAP development in Lrrk2 Tg mice, whereas the degree of SAP was comparable in Lrrk2 Tg mice with or without gut sterilization by a broad range of antibiotics. Pancreatic mononuclear cells from Lrrk2 Tg mice produced large amounts of IL-6 and TNF-α upon stimulation with Dectin-1 ligands, and inhibition of the Dectin-1 pathway by a spleen tyrosine kinase inhibitor protected Lrrk2 Tg mice from SAP. These data indicate that LRRK2 activation is involved in the development of SAP through proinflammatory cytokine responses upon fungal exposure.

Funder

Scientific Research

Japan Society for the Promotion of Science

Takeda Science Foundation

Kindai University Research Enhancement

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3