Affiliation:
1. Department of Radiation Oncology, Qilu Hospital of Shandong University (Qingdao) , Qingdao , China
2. Department of Medical Oncology, Qilu Hospital of Shandong University (Qingdao) , Qingdao , China
3. Department of Radiation Oncology, Qilu Hospital of Shandong University , Jinan , China
Abstract
Abstract
Tumor immunotherapy represented by programmed cell death protein 1 (PD-1) inhibitors is considered as the most promising cancer treatment method and has been widely used in the treatment of advanced gastric cancer (GC). However, the effective rate of PD-1 inhibitor monotherapy is low. In this study, we constructed a transplanted tumor model in GC mice by inoculating mouse forestomach carcinoma cell (MFC) GC cells into 615 mice. Interventions were conducted with normal saline, anti-PD-1 monoclonal antibody (mAb), bevacizumab, Pseudomonas aeruginosa-mannose-sensitive hemagglutinin (PA-MSHA), anti-PD-1 mAb combined with bevacizumab, anti-PD-1 mAb combined with PA-MSHA, bevacizumab combined with PA-MSHA, anti-PD-1 mAb combined with bevacizumab and PA-MSHA, respectively. The tumor growth curves were drawn. TUNEL assay, western blotting, and immunohistochemistry were used to detect tumor proliferation and apoptosis. Flow cytometry and ELISA were used to detect the expression of tumor infiltrating lymphocytes and cytokines. This study found that anti-PD-1 mAb alone could not significantly inhibit the growth of transplanted tumors in mice. Anti-PD-1 mAb combined with bevacizumab, anti-PD-1 mAb combined with PA-MSHA, anti-PD-1 mAb combined with bevacizumab and PA-MSHA could all significantly inhibit tumor growth in mice, and the combination of three drugs presented the highest tumor inhibition rate. Anti-PD-1 mAb combined with bevacizumab and PA-MSHA could significantly upregulate the number of Th1-type cells, CD8 + T cells, and Type I tumor-associated macrophages (TAMs), while downregulate the number of Th2-type cells, myeloid-derived suppressor cells, regulatory T cells, and Type II TAMs. Therefore, we conclude that anti-PD-1 mAb combined with bevacizumab and/or PA-MSHA has a synergistic effect. Bevacizumab and PA-MSHA can transform the tumor immunosuppressive microenvironment into a supportive immune microenvironment, thus maximizing the antitumor effect of anti-PD-1 mAb.
Funder
Shandong Provincial Natural Science Foundation
Special Fund for Taishan Scholar Project
National Natural Science Foundation of China
Beijing CSCO Clinical Oncology Research Foundation
Hospital Youth Fund of Shandong University
Publisher
Oxford University Press (OUP)
Subject
Immunology,Immunology and Allergy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献