Phenotypic and genomic analysis reveals Riemerella anatipestifer as the potential reservoir of tet(X) variants

Author:

Li Ruichao123ORCID,Jiang Yongjia1,Peng Kai1,Wang Yanhong13,Wang Mianzhi123,Liu Yuan123,Wang Zhiqiang134

Affiliation:

1. College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China

2. Institute of Comparative Medicine, Yangzhou University, Yangzhou, P. R. China

3. Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China

4. Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, P. R. China

Abstract

Abstract Background Tigecycline is regarded as one of the last-resort antimicrobials clinically. Emergence of plasmid-mediated tet(X) undermines such an important drug. However, the origins of tet(X) remain largely unexplored. Methods Riemerella anatipestifer strains were characterized by PCR, antimicrobial susceptibility testing, WGS and bioinformatics analysis. Functional analysis of tet(X) was verified by cloning experiments. Genomic structures of chromosome- and plasmid-mediated tet(X) were analysed. Results Thirty-eight R. anatipestifer strains were collected and found to be positive for tet(X). These strains were resistant to multiple antimicrobials; 55.3% (21/38) of the strains were resistant to tigecycline and all of the strains demonstrated resistance to tetracycline. The complete genome sequences of 18 representative strains were obtained. WGS analysis of 38 genomes identified 13 tet(X) variants located on chromosomes, which increased MICs of tigecycline (16–256-fold) for Escherichia coli, although most of them could not confer high-level resistance to tigecycline in the original R. anatipestifer hosts. Genomic environment analysis indicated that the occurrence of multiple tet(X) variants is common and other resistance genes, such as catB, tet(Q), floR, blaOXA, ereD and ermF, could be located in the same chromosomal regions. Two types of tet(X)-bearing segments were identified, one of which was floR-ISCR2-tet(X). This indicates that tet(X) variants were not conserved in chromosomal structures, but in regions with potential transferability. Furthermore, an MDR plasmid carrying tet(X18) was found in R. anatipestifer 20190305E2-2, different from the chromosomal tet(X21). Conclusions This study confirmed that tet(X) is highly prevalent in R. anatipestifer. The transfer risk of tet(X) across R. anatipestifer to other clinical pathogens warrants further investigations.

Funder

National Natural Science Foundation of China

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3