Molecular characterization of Neisseria gonorrhoeae isolates collected through a national surveillance programme in Japan, 2013: evidence of the emergence of a ceftriaxone-resistant strain from a ceftriaxone-susceptible lineage

Author:

Hanao Mami12,Aoki Kotaro3,Ishii Yoshikazu13,Shimuta Ken45,Ohnishi Makoto4,Tateda Kazuhiro13

Affiliation:

1. Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan

2. Department of Medical Technology, Faculty of Health Science, Tokyo University of Technology, Tokyo, Japan

3. Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan

4. Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan

5. Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan

Abstract

Abstract Objectives To investigate the spread of ceftriaxone-resistant Neisseria gonorrhoeae lineages similar to strains H041 (2009) and FC428 (2015), we characterized 55 strains collected in 2013 from hospitals across Japan. Methods Susceptibility testing and whole-genome sequencing. Results Susceptibility rates were 58% for cefixime and 98% for ceftriaxone. The 55 strains were whole-genome sequenced and classified into nine MLST-STs. MLST-ST1901 was the most prevalent (n = 19) followed by MLST-ST7363 (n = 12) and MLST-ST7359 (n = 11). The most prevalent penA [encoding penicillin binding protein 2 (PBP2)] mosaic types, based on the N. gonorrhoeae sequence typing for antimicrobial resistance (NG-STAR) scheme, were 10.001 (n = 20) followed by 34.001 (n = 13). The H041 and FC428 strains were not detected; however, a single ceftriaxone-resistant strain (TUM15748) with a MIC of 0.5 mg/L ceftriaxone was identified. The TUM15748 strain belonged to MLST-ST7359 and N. gonorrhoeae multiantigen sequence typing-ST6771, and had a novel PBP2 (PBP2TUM15748, penA type 169.001). The amino acid sequence of PBP2TUM15748 showed partial similarity to that of PBP2 from N. gonorrhoeae GU140106 and commensal Neisseria perflava and Neisseria cinerea. Natural transformation and recombination experiments using full-length TUM15748 penA showed that the ceftriaxone MICs of transformants increased 16-fold or more compared with the parental ceftriaxone-susceptible recipient strain (NG9807, belonging to MLST-ST7363). No ceftriaxone-resistant MLST-ST7359 strains have previously been reported. Conclusions We showed here that a ceftriaxone-susceptible lineage acquired a mutant PBP2 mosaic type, integrating partial PBP2 sequences from commensal Neisseria species, resulting in the emergence of ceftriaxone-resistant strains.

Funder

Japan Agency for Medical Research and Development

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3