High-quality genome assembly of an important biodiesel plant, Euphorbia lathyris L

Author:

Wang Mingcheng1ORCID,Gu Zhijia2,Fu Zhixi3,Jiang Dechun4ORCID

Affiliation:

1. Institute for Advanced Study, Chengdu University, Chengdu 610106, China

2. Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China

3. College of Life Sciences, Sichuan Normal University, Chengdu 610101, China

4. CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China

Abstract

Abstract Caper spurge, Euphorbia lathyris L., is an important energy crop and medicinal crop. Here, we generated a high-quality, chromosome-level genome assembly of caper spurge using Oxford Nanopore sequencing, Illumina sequencing, and Hi-C technology. The final genome assembly was ∼988.9 Mb in size, 99.8% of which could be grouped into 10 pseudochromosomes, with contig and scaffold N50 values of 32.6 and 95.7 Mb, respectively. A total of 651.4 Mb repetitive sequences and 36,342 protein-coding genes were predicted in the genome assembly. Comparative genomic analysis showed that caper spurge and castor bean clustered together. We found that no independent whole-genome duplication event had occurred in caper spurge after its split from the castor bean, and recent substantial amplification of long terminal repeat retrotransposons has contributed significantly to its genome expansion. Furthermore, based on gene homology searching, we identified a number of candidate genes involved in the biosynthesis of fatty acids and triacylglycerols. The reference genome presented here will be highly useful for the further study of the genetics, genomics, and breeding of this high-value crop, as well as for evolutionary studies of spurge family and angiosperms.

Funder

National Natural Science Foundation of China

Sichuan Science and Technology Bureau

Chengdu University

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3