The chromosome-scale genome of Kobresia myosuroides sheds light on karyotype evolution and recent diversification of a dominant herb group on the Qinghai-Tibet Plateau

Author:

Ning Yu12ORCID,Li Yang3,Dong Shu Bin4,Yang Hong Guo12,Li Chun Yi12,Xiong Biao5,Yang Jun4ORCID,Hu Yu Kun12,Mu Xian Yun6,Xia Xiao Fei7

Affiliation:

1. Institute of Ecological Protection and Restoration, Chinese Academy of Forestry , Beijing , China

2. Institute of Wetland Research, Chinese Academy of Forestry , Beijing , China

3. Huzhou University , Huzhou , China

4. College of Biological Sciences and Technology, Beijing Forestry University , Beijing , China

5. College of Tea Science, Guizhou University , Guiyang , China

6. College of Ecology and Nature Conservation, Beijing Forestry University , Beijing , China

7. Beijing Museum of Natural History , Beijing , China

Abstract

Abstract Kobresia species are common in meadows on the Qinghai–Tibet Plateau. They are important food resources for local livestock, and serve a critical foundation for ecosystem integration. Genetic resources of Kobresia species are scarce. Here, we generated a chromosome-level genome assembly for K. myosuroides (Cyperaceae), using PacBio long-reads, Illumina short-reads, and Hi–C technology. The final assembly had a total size of 399.9 Mb with a contig N50 value of 11.9 Mb. The Hi–C result supported a 29 pseudomolecules model which was in consistent with cytological results. A total of 185.5 Mb (44.89% of the genome) transposable elements were detected, and 26,748 protein-coding genes were predicted. Comparative analysis revealed that Kobresia plants have experienced recent diversification events during the late Miocene to Pliocene. Karyotypes analysis indicated that the fission and fusion of chromosomes have been a major driver of speciation, which complied with the lack of whole-genome duplication (WGD) in K. myosuroides genome. Generally, this high-quality reference genome provides insights into the evolution of alpine sedges, and may be helpful to endemic forage improvement and alpine ecosystem preservation.

Funder

Fundamental Research Funds

Chinese Academy of Forestry

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3