Comprehensive analysis of 124 transcriptomes from 31 tissues in developing, juvenile, and adult Japanese Black cattle

Author:

Arishima Taichi1,Wakaguri Hiroyuki2,Nakashima Ryotaro1,Sakakihara Seigo1,Kawashima Keisuke1,Sugimoto Yoshikazu3,Suzuki Yutaka2,Sasaki Shinji45

Affiliation:

1. Cattle Breeding Development Institute of Kagoshima Prefecture , Osumi, So, Kagoshima 899-8212, Japan

2. Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo , Chiba 277-8562, Japan

3. Shirakawa Institute of Animal Genetics, Japan Livestock Technology Association , Yushima, Bunkyouku, Tokyo 113-0034, Japan

4. Faculty of Agriculture, University of the Ryukyus , Nishihara, Nakagami-gun, Okinawa 903-0213, Japan

5. United Graduate School of Agricultural Sciences, Kagoshima University , Kagoshima 890-0065, Japan

Abstract

Abstract Omic analyses of economically important animals, including Japanese Black cattle, are currently underway worldwide. In particular, tissue and developmental stage-specific transcriptome characterization is essential for understanding the molecular mechanisms underlying the phenotypic expression of genetic disorders and economic traits. Here, we conducted a comprehensive analysis of 124 transcriptomes across 31 major tissues from fetuses, juvenile calves, and adult Japanese Black cattle using short-read sequencing. We found that genes exhibiting high tissue-specific expression tended to increase after 60 days from fertilization and significantly reflected tissue-relevant biology. Based on gene expression variation and inflection points during development, we categorized gene expression patterns as stable, increased, decreased, temporary, or complex in each tissue. We also analysed the expression profiles of causative genes (e.g. SLC12A1, ANXA10, and MYH6) for genetic disorders in cattle, revealing disease-relevant expression patterns. In addition, to directly analyse the structure of full-length transcripts without transcript reconstruction, we performed RNA sequencing analysis of 22 tissues using long-read sequencing and identified 232 novel non-RefSeq isoforms. Collectively, our comprehensive transcriptomic analysis can serve as an important resource for the biological and functional interpretation of gene expression and enable the mechanistic interpretation of genetic disorders and economic traits in Japanese Black cattle.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3